EksponenMatematika SMA RumusHitung Com. Bilangan Berpangkat dan Bentuk Akar Materi amp Soal. Materi Pelajaran Matematika Kelas 9 BAB 5 Bilangan. Soal Pembahasan Bilangan Berpangkat Nawwaf Com. Memahami Sifat sifat Pada Bilangan Berpangkat Bulat. Bentuk Pangkat Eksponen Belajar Matematika. Bilangan Bulat dengan Eksponen Bilangan Bulat Positif imam. Fungsieksponen f dengan bilangan pokok a adalah fungsi yang didefinisikan. Bilangan nol adalah bilangan yang. Nyatakan dalam pangkat bulat positif. X a x, dengan a > 0, a 1dan x r (himpunan bilangan real). Eksponensial dituliskan dengan angka maupun huruf di sebelah kanan atas ekspresi matematika tertentu yang disebut dengan basis. Bilanganberpangkat bulat positif secara umum . Nyatakan dalam bentuk pangkat positif yang paling sederhana !!!!! Diposting oleh elisa juventia] di 23.19 Tidak ada komentar: Kirimkan Ini lewat Email BlogThis! Sederhanakanlah bentuk pangkat berikut: a. (4a) -2. × (2a) 3 . c. 3. 9. SEDERHANAKANBENTUK BENTUK BERIKUT INI DAN NYATAKAN HASILNYA DALAM BENTUK PANGKAT BULAT POSITIF. Langkah yang tepat dalam interpretasi data pengindraan jauh adalah . Bagaimana penerapan nilai-nilai yang terkandung dalam Pancasila yang diterapkan oleh lembaga negara Indonesia. jelaskan melalui contoh nyata pada saat ini ! Bilanganz ini kita nyatakan dengan. x. y. pemangkatan, dan pembagian dari bilangan berpangkat bulat positif berikut: a. Jika a bilangan real, p dan q adalah bilangan bulat postitif maka Penerapan batasan bentuk ruas kanan produksi adalah mengubah semua bentuk produksi ke dalam 2 bentuk berikut : A → a dan A → B1 B2 Bn , n ≥ 2. Vay Tiền Trả Góp Theo Tháng Chỉ Cần Cmnd. Daftar Isi Apa Itu Bilangan Berpangkat? a. 2x2x2x2 b. 5x5x5x5x5x5x5 Sifat-sifat Bilangan Berpangkat - Pangkat Bulat Positif - Pangkat Bulat Negatif - Pangkat Bulat Nol 1. Sifat Perkalian Bilangan Berpangkat 2. Sifat Pembagian Bilangan Berpangkat 3. Sifat Pangkat dari Bilangan Berpangkat 4. Sifat Pangkat dari Perkalian Bilangan 5. Sifat Pangkat dari Pembagian Bilangan Contoh Soal Bilangan Berpangkat Contoh 1 Contoh 2 Siapa Penemu Bilangan Berpangkat? Bagaimana Penerapan Bilangan Berpangkat? - Pernah mendengar bilangan berpangkat? Umumnya, bilangan berpangkat dapat dipelajari selama bangku sekolah. Bilangan berpangkat memiliki peranan dan fungsinya sendiri dalam perhitungan. Fungsinya tidak hanya berlaku untuk pelajaran Matematika, tetapi juga dapat diterapkan ke dalam kehidupan tahu apa itu bilangan berpangkat? Simak artikel yang satu ini!Apa Itu Bilangan Berpangkat?Mengutip buku Explore Matematika Jilid 3 untuk SMP/MTs Kelas IX karya Agus Supriyanto dan Miftahudin, bilangan berpangkat adalah hasil perkalian suatu bilangan dengan bilangan itu sendiri. Bila pangkat bilangan bulat, bentuk bilangan berpangkatnya adalah bilangan berpangkat bulat. Sementara itu, bila pangkatnya bilangan pecahan atau rasional, bentuk bilangan berpangkatnya merupakan bilang berpangkat bilangan berpangkat merupakan perkalian suatu bilangan dengan bilangan itu sendiri, bilangan berpangkat disebut juga sebagai bentuk perkalian berulang, sepertia. 2x2x2x2Adanya empat buah angka 2 dalam perkalian tersebut dapat disederhanakan menjadi 24 yang dibaca sebagai 2 pangkat 5x5x5x5x5x5x5Adanya tujuh buah angka 5 dalam perkalian tersebut dapat disederhanakan menjadi 57 yang dibaca sebagai 5 pangkat contoh tersebut, bilangan berpangkat dapat didefinisikan sebagaiJika a sebuah bilangan real dan n merupakan bilangan bulat, maka yang disebut an baca a pangkat n adalah perkalian bilangan a dengan isinya sendiri sebanyak n berpangkat memiliki berbagai sifat operasi yang berlaku untuk pangkat bulat positif, negatif, dan nol- Pangkat Bulat Positifan = a x a x a x ... x a sebanyak n faktora = bilangan pokok basisn = pangkat atau eksponenan= bilangan berpangkat- Pangkat Bulat Negatifa-n = 1/an- Pangkat Bulat Nola0 = 1Berikut ini sifat-sifat yang berlaku pada bilangan berpangkat, baik pangkat bulat positif, negatif, maupun nol Sifat Perkalian Bilangan BerpangkatUntuk a ∈ R dan m, n bilangan bulat positif, berlakuam x an = am+n2. Sifat Pembagian Bilangan BerpangkatUntuk a ∈ R, a ≠ 0 dan m, n bilangan bulat positif yang memenuhi m > an = - = am-n an3. Sifat Pangkat dari Bilangan BerpangkatUntuk a ∈ R dan m, n bilangan bulat positif, berlakuamn = am n4. Sifat Pangkat dari Perkalian BilanganUntuk a, b ∈ R dan n bilangan bulat positif, berlakua bn = an bn5. Sifat Pangkat dari Pembagian BilanganUntuk a, b ∈ R, b ≠ 0 dan n bilangan bulat positif, berlakuan = an - - b bnContoh Soal Bilangan BerpangkatContoh 1Hitunglah nilai bilangan berpangkat berikut!a. 36b. -3p5Jawaba. 36 = 3 x 3 x 3 x 3 x 3 x 3 = 729b -3p5 = -3p x -3p x -3p x -3p x -3p = -234p5Contoh 2Selesaikan atau sederhanakan operasi bilangan berpangkat berikut ini!a. 72 x 73b. 6 x 72Jawaba. 72 x 73 = 72+3 = 75 = 6 x 72 = 62 x 72 = Penemu Bilangan Berpangkat?Mengutip John Napier 1550-1617 menjadi orang pertama yang menemukan bilangan berpangkat atau eksponen. John Napier sendiri adalah seorang bangsawan asal Merchiston, Skotlandia, yang menemukan bilangan logaritma dan logaritma yang ia temukan akhirnya memiliki hubungan tersendiri. Napier menyadari setiap bilangan biasa diubah ke dalam bentuk eksponen ataupun logaritma agar bilangan tersebut memiliki bentuk akhir yang lebih Penerapan Bilangan Berpangkat?Umumnya, bilangan berpangkat digunakan untuk memudahkan penulisan bilangan-bilangan yang sangat kecil atau yang sangat besar. Misal, jarak matahari ke bumi yang sebesar 149, km dapat ditulis dalam bentuk 1,496 x 10 km. Penggunaannya juga berlaku untuk menuliskan jari-jari atom hidrogen 0,000000000053 ke dalam bentuk 5,3 x 10°! mBilangan berpangkat atau eksponen tidak hanya memudahkan penulisan bilangan yang sangat kecil atau besar, tetapi juga membantu dalam pelajaran ekonomi dan biologi. Dalam pelajaran ekonomi, bilangan berpangkat berlaku untuk perhitungan bunga majemuk. Misalnya, bila suku bunga dibayarkan sebanyak satu kali dalam setahun, perhitungan dapat dilakukan dengan rumus Mn = M1 + i pada pelajaran biologi, fungsi perpangkatan dapat digunakan untuk mengukur pertumbuhan penduduk dan perusahaan yang dimulai dari awal waktu hingga batas waktu tertentu. Perhitungan pertumbuhan biologis dapat dirumuskan dengan N = penjelasan terkait bilangan berpangkat, mulai dari pengertian, sifat, penerapan, hingga contoh soalnya. Semoga artikel ini membantu detikers dalam memahami bilangan berpangkat lebih jauh, ya! Simak Video "Pesona Wisata Sumenep Pantai, Sejarah, dan Tradisi" [GambasVideo 20detik] des/fds MatematikaBILANGAN Kelas 9 SMPBILANGAN BERPANGKAT DAN BENTUK AKARBilangan Berpangkat Pecahan, Negatif, dan NolBilangan Berpangkat Pecahan, Negatif, dan NolBILANGAN BERPANGKAT DAN BENTUK AKARBILANGANMatematikaRekomendasi video solusi lainnya0105Hasil dari 4^-1 + 4^-2 adalah A. 8/16 B. 6/16 C. 5/16 D. ...0209Bentuk sederhana dari a^-5b^-1c^-4/abc^-6 adalah ... ...Teks videountuk mengerjakan soal ini kita gunakan rumus x pangkat minus y akan menjadi 1 per x ^ y lalu dari soal bisa kita lihat 3 dikali a pangkat minus 2 dikali B pangkat min 3 akan menjadi = 3 dikali a pangkat minus 2 kita gunakan rumus yang sudah saya tulis di kiri bentuknya akan menjadia pangkat 2 dikali B pangkat minus 3 kita gunakan juga rumus yang di sebelah kiri sehingga akan menjadi 1 per B pangkat 3 sehingga hasilnya akan menjadi 3 per a kuadrat dikali pk3. Kesimpulannya bentuk 3 a ^ minus 2 dikali B pangkat minus 3. Jika kita Nyatakan bentuknya dalam bilangan berpangkat bulat positif akan menjadi 3 per a kuadrat B pangkat 3 sampai jumpa pada soal berikutnya Mungkin dari sebagian kalian telah mempelajari mengenai materi bilangan berpangkat. Atau mungkin belum pernah mendengar sama sekali apa itu bilangan berpangkat. Berikut informasi bilangan berpangkat ini ternyata mempunyai banyak manfaat ataupun kegunaan yang sangat penting khususnya bagi para selengkapnya mengenai bilangan berpangkat, simak pembahasan berikut BerpangkatJenis Jenis Bilangan Berpangkat1. Bilangan Berpangkat Positif2. Bilangan Berpangkat Negatif3. Bilangan berpangkat Nol 0Sifat Sifat Bilangan Berpangkat1. Pangkat Bulat positif2. Pangkat Bulat Negatif3. Pangkat Nol4. Sifat-sifat Pangkat Bulat Positif5. Pangkat PecahanOperasi Hitung Bilangan Berpangkat1. Sifat Perkalian Bilangan Berpangkat2. Sifat Pembagian Bilangan Berpangkat3. Sifat Perpangkatan Bilangan Berpangkat4. Sifat Perpangkatan Suatu Perkalian Dua Bilangan5. Sifat Perpangkatan Suatu Pembagian Dua Bilangan6. Sifat Perpangkatan Bilangan nolBentuk AkarBilangan berpangkat merupakan suatu bilangan yang berguna untuk menyederhanakan penulisan serta penyebutan suatu bilangan yang mempunyai faktor-faktor perkalian yang contoh 3x3x3x3x3=… atau 7x7x7x7x=… , dan lain berbagai bilangan dengan faktor-faktor yang sama seperti di atas pada umumnya disebuat dengan perkalian apabila yang dikalikan angkanya sangat banyak, maka kita juga akan mengelami kesulitan di dalam dalam tersebut tak lain sebab sangking banyaknya angka untuk satu kali bilangan pada perkalian perkalian berulang bisa kita tuliskan secara ringkas dengan memakai notasi angka bilangan contoh3 x 3 x 3 x 3 x 3 bilangan tersebut bisa kita ringkas kembali dengan memakai bilangan berpangkat menjadi 35 8 x 8 x 8 x 8 x 8 x 8 x 8 x 8 x 8 x 8 dan angka tersebut bisa kita ringkas kembali hingga menjadi bilangan berpangkat 810Cara membacanya35 Sepuluh pangkat 5 810 Delapan pangakt 10Pangkat di atas berguna untuk menentukan jumlah faktor yang di bilangan berpangkat yaituan=a×a×a×a…sebanyak n kaliJenis Jenis Bilangan BerpangkatTerdapat beberapa jenis bilangan berpangkat yang paling sering lain yakni bilangan berpangkat positif +, bilangan berpangkat negatif - serta bilangan berpangkat nol 0.Berikut akan kami berikan penjelasan pada masig-masing jenisnya. Simak baik-baik ulasan di bawah ini Bilangan Berpangkat PositifBilangan berpangkat positif merupakan suatu bilangan yang mempunyai pangkat atau eksponen positif. Apa itu yang dimaksud sebagai eksponen? eksponen merupakan penyebutan lain dari pangkat. Bilangan berpangkat positif mempunyai sifat-sifat tertentu, yang mana bilangan tersebut terdiri atas a, b, sebagai bilangan real dan m, n, yang merupakan bilangan bulat Eksponen merupakan suatu bentuk pada bilangan perkalian dengan bilangan yang sama kemudian di ulang-ulang atau pengertian singkatnya yaitu perkalian yang beberapa sifat dari bilangan berpangkat positif, diantaranya ialah sebagai berikut iniam x an = am+nam an = am-n , untuk m>n dan b ≠ 0amn = amnabm = am bma/bm = am/bm , untuk b ≠ 0Untuk lebih memahami uraian di atas, perhatikan baik-baik contoh soal di bawah Bilangan Berpangkat NegatifKemudian ialah pengertian dari bilangan berpangkat negatif yang merupakan bilangan yang mempunyai pangkat atau eksponen negatif -.Adapun beberapa sifat bilangan berpangkat negatif, antara lain ialah sebagai berikutJika a∈R, a ≠ 0, dan n merupakan bilangan bulat negatif, makaa-n = 1/an atau an = 1/ a-nUntuk lebih memahami uraian di atas, perhatikan baik-baik contoh soal di bawah iniSoal sekaligus nyatakan dengan pangkat positif bilangan berpangkat di bawah ini1/ 6a + b-7 = ….Jawab1/ 6a + b-7 = = 1/6 a+b7Soal dengan pangkat negatif bilangan berpangkat di bawah inix1y2 / 2z6 = ….Jawabx1y2 / 2z6 = 2-1x-1z-6 / y-2, dengan x ≠ 0 dan z ≠ Bilangan berpangkat Nol 0Tak hanya ada bilangan berpangkat positif serta bilangan berpangkat negatif yang ada pada bilangan berpangkat dalam ilmu matematika juga terdapa bilangan berpangkat nol a. Maka dati itu, yuk mari kita pelajari lebih dalam mengenai bilangan berpangkat nol kita sudah mengetahui bahwa sifat-sifat bilangan berpangkat, ialah sebagai berikutan/an = 1 berdasarkan dari sifat pembagian bilangan berpangkat positif maka bisa kita dapatkanan/an = an-n = a0, sehingga a0 = 1Sehingga sifat dari bilangan berpangkat nol 0 yaitu “Jika nilai a merupakan bilangan riil serta a tidak sama dengan 0, maka a0 = 1″Untuk lebih memahami uraian di atas, perhatikan baik-baik contoh soal di bawah iniSederhanakan beberapa bilangan berpangkat di bawah iniSoal – y2x2 – y20Soal + 2 y / 3x + 2y0JawabSoal – y2x2 – y20 = 5x2 – y2 x 1 = 5x2 – y2, dengan x2 – y2 ≠ 0Soal + 2 y / 3x + 2y0 = 3x + 2y / 1 = 3x + 2y, dengan 3x + 2y ≠ 0Demikianlah pembahasan yang dapat kita sampaikan terakti bilangan berpangkat, sekarang kita lanjutkan ke pembahasan yang ke dua yakni Bentuk Akar. Perhatikan baik-baik ulasan di bawah ini ya..Sifat Sifat Bilangan BerpangkatBerikut ini adalah beberapa sifat yang terdapat di dalam bilangan berpangkat, antara lian yakni1. Pangkat Bulat positifPengertianSebagai contohnya a bilangan real serta n bilangan bulat positif. Notasi anakan menyatakan hasil kali dari bilangan a sebanyak n faktor. Sehingga dapat kita tuliskan menjadian = a × a × a × … × aDi mana a x a x a x …. x a merupakan n merupakan basis bilangan merupakan dapat kita ketahui bahwa Pada uraian di atas, maka kita sepakati, a1 cukup ditulis dengan a. Tidak seluruh a0 dengan a bilangan real menyatakan 1. Pada saat a = 0 serta n = 0, maka an= 00, maka hasilnya tidak menentu. Apabila n merupakan suatu variabel sebagai eksponen dari a, maka perlu kita perhatikan semesta variabel tersebut. Karena an = a × a × … × a sebanyak n faktor, ini hanya berlaku pada saat semesta n ∈ lebih memahami uraian di atas, perhatikan baik-baik contoh soal di bawah ini24 = 2 x 2 x 2 x 2 =1632 = 3 x 3 = 92. Pangkat Bulat NegatifPengertianUntuk a bilangan real serta a ≠ 0, m bilangan bulat positif, maka di definisikan menjadia-m = 1/amDari uraian di atas maka dapat dijelaskan lagi menjadi sebagai berikutUntuk lebih memahami uraian di atas, perhatikan baik-baik contoh soal di bawah ini3. Pangkat NolPengertianUntuk a bilangan real serta a ≠ 0, maka a0 = a tidak boleh sama dengan nol?Seperti yang sudah dijelaskan di atas, pada saat a = 0 maka a0 = 00, maka hasil­nya tidak contoh20 = 130 = 14. Sifat-sifat Pangkat Bulat PositifBerikut adalah beberapa sifat dari bilangan pangkat bulat positifSifat-1Apabila a bilangan real, m serta n bilangan bulat positif makaam × an = am+nPembuktianSi­fat di atas hanya berlaku apabila a merupakan bilangan real, m serta n merupakan bi­langan bulat positif. Apabila m dan n bukan bilangan bulat positif, maka sifat-1 tidak berlaku. Contohnya a = 0 dan m = n = 0, tidak ber­ contoh22 x 23 = 2 x 2 x 2 x 2 x 2= 32= 2522 x 23 = 22+3Sifat-2Apabila a bilangan real serta a ≠ 0, m dan n bilangan bulat positif, sehinggaDalam sifat-2 tidak diperkenakan apabila a = 0, karena ben­tuk perpangkatan pada sifat-2 merupakan bentuk ra­ pecahan yang penyebutnya tidak lazim nol. Pada a = 0 dan m, n merupakan bilangan bulat positif, sehingga am atau an dimung­kinkan hasilnya hasil am serta an keduanya nol, maka hasil baginya tidak am = 0 dan an ≠ 0, maka hasil baginya 0. Namun, apabila am ≠ 0 dan an = 0, maka hasil baginya tak ter­ contoh25 / 23 = 2 x 2 x 2 x 2 x 2 / 2 x 2 x 2= 4= 22= 25-3Perpangkatan Bilangan BulatSecara umum, perkalian sembarang bilangan bulat a sebanyak n kali atau n faktor, yaitua × a × a × … × a atau jika ditulis menjadi an Keterangana = disebut sebagai bilangan pokok atau bilangan dasar n = disebut sebagai pangkat atau eksponen an = disebut sebagai bilangan berpangkat dibaca a pangkat nSifat-3Jika a bilangan real serta a ≠ 0, m dan n merupakan bilangan bulat positif, maka amn = amnPembuktianSebagi contoh 232 = 23 x 23= 2 x 2 x 2 x 2 x 2 x 2= 2 x 2 x 2 x 2 x 2 x 2= 26Di mana 2 x 2 x 2 merupakan 3 faktor, 2 x 2 x 2 x 2 x 2 x 2 merupakan 6 faktor, dan lain Pangkat PecahanPengertianContohnya a merupakan bilangan real dan a ≠ 0, serta m merupakan bilangan bulat positif, maka a1/m = p merupakan bilangan real positif, sehingga pm = perpangkatan bilangan real dengan pangkat pecahanPengertianContonya a merupakan bilangan real dan a ≠ 0, m, n merupakan bilangan bulat positif maka didefinisikan menjadiam/n = a1/nmMisalkan a merupakan bilangan real dengan a > 0,p/n dan m/n merupakan bilangan pecahan n ≠ 0, makaam/n = ap/n = am+p/nPembuktianApabila a merupakan bilangan real dengan a > 0, sehinggam/n dan p/q bilangan pecahan q, n ≠ 0, makaam/n = ap/q = am/n+p/qRangkuman sifat bilangan berpangkatUntuk a, b merupakan bilangan bulat serta n, p, dan q merupakan bilangan bulat positif, maka berlakuOperasi Bilangan BerpangkatBilangan negatif dipangkatkan dengan pangkat ganjil maka akan menghasilakn bilangan negatif dipangkatkan dengan pangkat genap maka akan menghasilkan hasilnya bilangan bilangan berpangkat yang bilangan pokoknya sama, maka pangkatnya akan bilangan berpangkat yang bilangan pokoknya sama, maka pangkatnya akan bilangan berpangkat apabila dipangkatkan lagi, maka pangkatnya akan menjadi Hitung Bilangan BerpangkatBerikut akan kami berikan operasi hitung dalam bilangan berpangkat. Meliputi sifat perkalian, pembagian, perpangkatan dan yang lainnya sekaligus contoh soal dan ulasan di bawah ini dengan Sifat Perkalian Bilangan BerpangkatPada operasi hitung perkalian dalam bilangan berpangkat, berlaku sifat seperti di bawah iniam x an = am+nUntuk lebih memahami cara mengenai rumus di atas, perhatikan uraian di bawah ini53 x 52 = 5 x 5 x 5 x 5 x 553 x 52 = 5 x 5 x 5 x 5 x 553 x 52 = 55Sehingga dapat kita simpulkan menjadi 53 x 52 = 55Contoh Soal Sifat Perkalian Bilangan Berpangkat beserta PembahasannyaSederhanakan hasil perkalian dari bilangan berpangkat di bawah ini, lalu tentukan nilainya!72 x 75-24 x -25-33 x -3723 x 343y2 x y32x4 x 3x6-22 x 23Jawab1. 72 x 75 = 72+5 = 77 = -24 x -25 = -24+5 = -29 = – 5123. -33 x -37 = -33+7 = -310 = 23 x 34 , soal ini tidak bisa kita sederhakan kembali sebab bilangan pokonya berbeda 2 dan 3. Sehingga, kita hanya dapat menghitung nilainya saja, yaitu 23 x 34 = 8 x 81 = 6485. 3y2 x y3 = 3y2+3 = 3y56. 2x4 x 3x6 = 2 x 3x 4+6 = 6x107. -22 x 23 = -12 x 22 x 23 = 1 x 22+3 = 25 = 32Untuk kasus bilangan pokok negatif yang berpangkat, seperti pada nomor 2, 3 , 7 terdapat poin penting yang harus kalian ketahui, yaituBilangan negatif pangkat genap= Hasilnya positifBilangan negatif pangkat ganjil= Hasilnya negatif2. Sifat Pembagian Bilangan BerpangkatPada operasi hitung pembagian bilangan berpangkat, maka akan berlaku sifat seperti di bawah iniam an = am-nUntuk lebih memahami cara mengenai rumus di atas, perhatikan uraian di bawah ini56 x 53 = 5 x 5 x 5 x 5 x 5 x 5 x 5 x 5 x 556 x 53 = 5 x 5 x 5 coret 5 x 5 x 5 x 5 x 5 x 556 x 53 = 53Sehingga, bisa kita simpulkan menjadi 56 x 53 = 56-3Contoh Soal Sifat Pembagian Bilangan Berpangkat dan PembahasannyaSederhanakan hasil pembagian dari bilangan berpangkat di bawah ini, lalu tentukan nilainya!45 / 5334 / 23Jawab1. 45 / 53 = 45-3 = 42 = 162. 34 / 23, soal ini tidak bisa kita sederhakan kembali sebab bilangan pokonya berbeda 3 dan 2. Sehingga, kita hanya dapat menghitung nilainya saja, yaitu34 / 23 = 81/ 8 = 10,1253. Sifat Perpangkatan Bilangan BerpangkatPada operasi hitung perpangkatan bilangan berpangkat, maka akan berlaku sifat seperti berikut iniamn = amxnUntuk lebih memahami cara mengenai rumus di atas, perhatikan uraian di bawah ini532 =5 x 5 x 52532 = 5 × 5 × 5 × 5 × 5 × 5532 = 56Sehingga, bisa kita simpulkan menjadi 532 = 53×2Contoh Soal Sifat Perpangkatan Bilangan Berpangkat beserta PembahasannyaSederhanakan hasil perpangkatan dari bilangan berpangkat di bawah ini, lalu tentukan nilainya!435[-24]2Jawab435 = 43×5 = 415 = = -24×2 = -28 = 2564. Sifat Perpangkatan Suatu Perkalian Dua BilanganPada operasi hitung perpangkatan pada sebuah perkalian dua bilangan, maka akan berlaku sifat seperti berikut inia x bm = am x bmUntuk lebih memahami cara mengenai rumus di atas, perhatikan uraian di bawah ini3 x 52 = 3 x 5 x 3 x 53 x 52 =3 x 3 x 5 x 53 x 52 = 32 x 52Sehingga, bisa kita simpulkan menjadi 3 x 52 = 32 x 52Contoh Soal Sifat Perpangkatan Suatu Perkalian 2 Bilangan dan PembahasannyaSederhanakan hasil perpangkatan dari bilangan berpangkat di bawah ini, lalu tentukan nilainya!2 x 72[1/2 x 1/3]3Jawab2 x 72 = 22 x 72 = 4 x 49 = 196[1/2 x 1/3]3 = 1/23 x 1/33 = 1/8 x 1/27 = 1/2165. Sifat Perpangkatan Suatu Pembagian Dua BilanganDalam operasi hitung perpangkatan suatu pembagian dua bilangan, berlaku sifat sebagai berikuta bm = am bmUntuk lebih memahami cara mengenai rumus di atas, perhatikan uraian di bawah ini3/52 = 3/5 x 3/53/52 = 3 x 3/5 x 53/52 = 32/52Sehingga, bisa kita simpulkan menjadi 3/52 = 32/52Contoh Soal Sifat Perpangkatan Suatu Pembagian 2 Bilangan dan PembahasannyaSederhanakan hasil perpangkatan dari bilangan berpangkat di bawah ini, lalu tentukan nilainya!2/32[−3/2]3Jawab2/32 = 22/52 = 4/25[−3/2]3 = −33/23 = −27/86. Sifat Perpangkatan Bilangan nolApabila a merupakan bilangan real a ∈ R serta n merupakan bilangan bulat positif n ≥ 1, maka sifat-sifat perpangkatan bilangan 0 nol ialah sebagai berikutao = 10n = 00o = tak terdefinisiUntuk membuktikan sifat pangkat darir bilangan nol nomor 1, simak penjelasan di bawah ini24 24 = 24-4 = 20 sehingga,24 24 = 20, sebab 24 24 = 16/16 = 1, maka20 = 1Dengan pembuktian tersebut, maka dapat kita simpulkan jika seluruh bilangan real kecuali nol jika kita pangkatkan dengan 0 nol maka hasilnya akan sama dengan pembuktian sifat pangkat bilangan nol nomor 2, simak penjelasan di bawah ini01 = 0 × 0 = 002 = 0 × 0 × 0 = 003 = 0 × 0 × 0 × 0 = 0Dengan pembuktian di atas, maka bisa kita simpulkan jika bilangan nol apabila kita pangkatkan sebanyak apa pun hasilnya akan selalu pembuktian sifat pangkat bilangan nol nomor 3, simak penjelasan di bawah iniKita tahu jika nilai 0n = 0, sehingga,0n/0n = 0/0, nilai 0/0 = seluruh bilangan, karena seluruh bilangan dikalikan nol hasilnya yaitu dapat kita tuliskan bentuk persamaan lainnya, seperti0n/0n = 0n-n0n/0n = 00 karena 0n/0n = 0/0 = seluruh bilangan, maka00 = seluruh bilanganseluruh bilangan artinya dapat 1, 12, 123, 1234, 12345, 13456 dan seterusnya. Maka dari itu, definisinya tidak bisa kita simpulkan jika bilangan nol pangkat nol hasilnya tidak AkarBentuk akar merupakan akar dari suatu bilangan-bilangan yang hasilnya bukan termasuk ke dalam bilangan rasional bilangan yang meliputi bilangan cacah, bilangan prima, serta bilangan-bilangan lain yang terkait atau bilangan irasional yakni bilangan yang hasil baginya tidak pernah berhenti.Bentuk akar adalah bentuk lain untuk menyebutkan suatu bilangan yang berpangkat. Bentuk akar termasuk ke dalam bilangan irasional di mana bilangan irasional tidak bisa disebutkan dengan menggunakan bilangan pecahan a/b, a serta b bilangan bulat a dan b ≠ 0. Bilangan dari bentuk akar merupakan suatu bilangan yang ada di dalam tanda √ yang disebut sebagai tanda akar. Beberapa contoh bilangan irasional di dalam bentuk akar yakni √2, √6, √7, √11 dan lain sebagainya. Sementara untuk √25 bukanlah bentuk akar, sebab √25 = 5 5 merupakan bilangan rasional sama saja angka 25 bentuk akarnya yaitu √ akar “√” pertama kali diperkenalkan oleh seorang matematikawan asal Jerman yang bernama Christoff dalam bukunya dengan judul Die Coss. Simbol tersebut dipilih sebab mirip dengan huruf ” r ” yang mana diambil dari kata “radix”, yang merupakan bahasa latin bagi akar pangkat bilangan berpangkat yang mempunyai beberapa sifat-sifat, bentuk dari akar pun juga mempunyai beberapa sifat, diantaranya yakni√a2 = a√a x b = √a x √b ; a ≥ 0 dan b ≥ 0√a/b = √a/√b ; a ≥ 0 dan b ≥ 0Demikianlah ulasan singkat kali ini yang dapat kami sampaikan mengenai Bilangan Berpangkat – Eksponen. Semoga ulasan di atas mengenai Bilangan Berpangkat – Eksponen dapat kalian jadikan sebagai bahan belajar kalian. Hai, Quipperian! Kamu telah berkenalan dengan bilangan berpangkat—lebih tepatnya lagi, bilangan berpangkat bulat positif, negatif, dan nol. Menurutmu, mudah atau sulitkah materi itu? Apakah kamu sudah mengingat betul sifat-sifat yang ada pada bilangan berpangkat? Percaya deh, mengenalinya tanpa mencoba mengerjakan latihan soalnya tidak akan menjadikan kamu berhasil menguasai materi tersebut. Pssst, meskipun kadang soal yang disajikan terlihat rumit, kamu dijamin akan bisa mengerjakan soal dengan menerapkan sifat-sifat bilangan berpangkat bulat positif yang bisa kamu temukan dalam postingan Quipper Blog juga. Nah, supaya kamu semakin mahir dalam melakukan operasi hitung pada bilangan berpangkat dan tidak salah dalam menerapkan sifat-sifatnya itu, Quipper Blog telah menyediakan latihan soal untuk kamu kerjakan, nih! Gimana, sudah siapkah kamu untuk mulai hitung-menghitung? Setelah menghitung dan mendapatkan jawabannya, cobalah samakan operasi hitung dan jawabanmu dengan pembahasan yang tersedia di bawah soal. Hmm, kira-kira, berapa soalkah yang akan kamu jawab dengan benar? Optimis benar semua enggak, nih? Jangan ditunda-tunda, deh! Yuk, segera dicoba! Contoh Soal Bilangan Berpangkat Bulat No. 1 Pembahasan Bilangan pokok pada soal ini ialah -6, sementara eksponennya ialah 3. Maka dari itu, yang perlu kamu lakukan ialah mengalikan -6 sebanyak 3 kali, sebagai berikut -63 = -6 x -6 × -6 =36 ×-6 =-216 Dengan demikian, pilihan jawaban yang tepat ialah pilihan pertama. Jawaban 1 Contoh Soal Bilangan Berpangkat Bulat No. 2 Pembahasan Dengan demikian, pilihan jawaban yang tepat ialah pilihan pertama. Jawaban 1 Contoh Soal Bilangan Berpangkat Bulat No. 3 Pembahasan Untuk mengerjakan soal satu ini, pertama-tama kamu harus menyelesaikan operasi perkalian yang ada di dalamnya, yaitu antara 4a524a2 dengan menggunakan salah satu sifat pada bilangan berpangkat bulat positif baru kemudian melakukan operasi penambahan, sebagai berikut 4a5 x 24 a2+ 6a7 = 4×24 a5 x a2 + 6a7 = 4×2×2×2×2×a5+2 + 6a7 = 64a7+6a7 = 70a7 Dengan demikian, pilihan jawaban yang tepat ialah pilihan keempat. Jawaban 4 Contoh Soal Bilangan Berpangkat Bulat No. 4 Pembahasan Persoalan satu ini menggabungkan operasi perkalian dengan pembagian. Karena semua bilangan pokok dalam soal adalah sama, kamu dapat langsung menerapkan sifat bilangan berpangkat bulat positif dalam soal perkalian pada pembilangnya dan juga pembagian pada soal secara utuhnya, sebagai berikut Dengan demikian, pilihan jawaban yang tepat ialah pilihan ketiga. Jawaban 3 Contoh Soal Bilangan Berpangkat Bulat No. 5 Pembahasan Kelihatannya rumit, ya, Quipperian? Tapi, ternyata mengerjakan soal satu ini cukup mudah, lho, karena adanya kelompok bilangan yang sama, yakni b+c, yang dapat langsung kamu terapkan ke dalam salah satu sifat bilangan berpangkat bulat positif tanpa perlu repot-repot memecahkannya. Jangan lupa juga sifat bilangan berpangkat bulat negatif yang perlu kamu terapkan ke dalam penyebut pada pecahan ini, sebagai berikut Dengan demikian, pilihan jawaban yang tepat ialah pilihan kedua. Jawaban 2 Contoh Soal Bilangan Berpangkat Bulat No. 6 Pembahasan Meskipun soal ini menyediakan bilangan berpangkat bulat negatif, jangan terkecoh dan menyulitkan dirimu sendiri dengan menjadikan seluruh pembilang dan penyebutnya ke dalam bentuk pecahan di dalam pecahan. Kamu bisa, lho, menerapkan salah satu sifat bilangan berpangkat bulat positif pada operasi perkalian yang ada di dalam soal ini. Pssst, jangan lupa untuk menjadikan semua bilangan bulat ke dalam bentuk pemangkatannya bila memungkinkan untuk semakin memudahkanmu menghitung, sebagai berikut Dengan demikian, pilihan jawaban yang tepat ialah pilihan ketiga. Jawaban 4 Contoh Soal Bilangan Berpangkat Bulat No. 7 Pembahasan Nah, untuk soal satu ini, tentu saja pertama-tama kamu harus mengingat dahulu cara mencari luas permukaan serta volume kubus. Setelah kamu berhasil mendapatkannya, masukkan ke dalam perbandingan yang diminta, yakni luas permukaan dahulu, baru volume. Lalu, kamu tinggal menyederhanakan perbandingan yang kamu dapatkan, sebagai berikut Dengan demikian, pilihan jawaban yang tepat ialah pilihan keempat. Jawaban 4 Gimana, Quipperian? Berapa soalkah yang berhasil kamu jawab dengan benar? Selalu memberikan tantangan bagi dirimu sendiri untuk menjawab latihan soal pasti bisa menjadikanmu menguasai materi di dalam pelajaran Matematika, ya! Kalau kamu mau mengerjakan contoh soal lain seperti di atas, buruan gabung dengan Quipper Video! Sumber Anak Kelas 9, Yuk Pahami Materi Bilangan Berpangkat Bulat Positif, Negatif, dan Nol Ini! Penulis Evita Haii gaes kali ini akan melanjutkan membahas soal-soal yang ada dibuku LKS Kelas VII SMP/MTs Karangan Drs. Sunardi. Namun, pada kesempatan ini saya cuma akan membahas latihan - 2 Bilangan Berpangkat Bulat Positif halaman 15 - 16. Untuk Latihan 4 dan Latihan 5 akan saya bahas pada kesempatan selanjutnya. Sebelum masuk ke contoh soal disini saya akan membahhas sedikit tentang sifat-sifat bilangan berpangkat, yang nantinya akan digunakan dalam proses pengerjaan soal-soalnya. Kemudian saya juga akan membahas sifat-sifat bentuk akar, karena pada materi bilangan berpangkat ini kebanyakan soal-soalnya berhubungan dengan akar. Sifat-sifat Bilangan Berpangkat Berikut ini adalah sifat-sifat perkalian & pembagian bilangan bulat positif. am x an = am + n am an = am - n amn = am x n a x bm = am x bm a bm = am bm Berikut ini adalah sifat-sifat lain dari bilangan berpangkat. a0 = 1 a1 = a a-n = 1/an Bentuk akar adalah kebalikan dari bentuk pangkat. Misalkan diketahui suatu bilangan berpangkat, an = b, maka bentuk akarnya adalah = a. Berikut ini adalah soal-saol bilangan berpangkat bulat positif beserta pembahasannya. Soal No 1 Hitunglah hasil pemangkatan berikut a. 28 b. 53 Penyelesaian a. 28 = 2x2x2x2x2x2x2x2 = 4 x 4 x 4 x 4 = 16 x 16 = 256 b. 53 = 5x5x5 = 25 x 5 = 125 Soal No 2 Hitunglah hasil pemangkatan bilangan negatif berikut ini a. -38 Penyelesaian a. -38 = -3x-3x-3x-3x-3x-3x-3x-3 = 9 x 9 x 9 x 9 = 81 x 81 = b. -25 = -2x-2x-2x-2x-2 = 4 x 4 x -2 = 16 x -2 = -32 Soal No 3 Tentukan hasil pemangkatan bilangan pecahan berikut a. 2/52 b. 1/32 Penyelesaian Soal No 4 Sederhanakan operasi pangkat berikut a. a5 x a7 b. a8 a7 x a2 Penyelesaian a. a5 x a7 = a5+7 = a12 b. a8 a7 x a2 = a8 a7+2 = a8 a9 = a8-9 = a-1 = 1/a Soal No 5 Hitunglah hasil operasi bilangan berpangkat berikut a. 22 x 24 b. 213 73 Penyelesaian a. 22 x 24 = 22+4 = 26 = 64 b. 213 73 = 21x21x21 7x7x7 = 373 = 27 Soal No 6 Hitunglah hasil operasi pecahan berikut a. 2/43 - 1/82 a. 3/52 x 1/23 Penyelesaian Soal No 7 Tentukan hasil pengakaran berikut a. b. Penyelesaian a. = 6 b. = 18 Soal No 8 Tentukan hasil akar pangkat tiga berikut a. b. Penyelesaian a. = 9 b. = 28 Soal No 9 Hitunglah hasil operasi akar berikut a. x b. Penyelesaian Soal No 10 Hitunglah hasil operasi 132 + 152 dan 13 + 152. Samakah hasilnya? Penyelesaian 132 + 152 = 13x13 + 15x15 = 169 + 225 = 394 13 + 152 = 282 = 28 x 28 = 784 Jadi, hasil operasi 132 + 152 dan 13 + 152 tidak sama! Baik itulah sedikit soal dan pembahasan dari materi bilangan berpangkat bulat positif yang bisa saya bagikan. Semoga bermanfaat..

nyatakan bentuk berikut dalam bilangan berpangkat bulat positif